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Abstract. There is an increasing need for graph transformations en-

suring valid result graphs wrt. a given set of constraints. In a model

refactoring process, for example, each performed refactoring should yield

a valid model graph. At least, it has to remain an element of the underly-

ing modeling language. If a graph transformation rule always produces

valid output, it is called validity-guaranteeing; if only when applied to

an already valid graph, it is called validity-preserving. There is a formal

construction for graph transformation systems making them validity-

guaranteeing. This is ensured by adding a validity-guaranteeing applica-

tion condition to each of its transformation rules. This theory has been

implemented recently as an Eclipse plug-in called OCL2AC. Initial tests

have shown that resulting application conditions can become pretty large.

As there are interesting application cases where transformations just

need to be validity-preserving (such as model refactoring), we started to

investigate this case further. The results are optimizing-by-construction

techniques for application conditions for transformations that just need

to be validity-preserving. All presented optimizations are proven to be

correct. Implementing and evaluating them, we found that the complex-

ity of the resulting application conditions is considerably reduced (by

factor 7 on average). Moreover, our optimization yields a speedup of rule

application by approximately 2.5 times.
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1 Introduction

Model transformations are the heart and soul of Model-Driven Engineering (MDE).
They are used for various MDE-activities including translation, optimization,
and synchronization of models [31]. Usually, a transformation (that may consist
of several transformation steps) should yield a valid result model, especially if
it has been applied to an already valid model. Intermediate models may not be
required to be valid as, e.g., argued in [8]. But there are scenarios where even
intermediate models have to show validity, at least a basic one, as the following
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example applications show: (1) Throughout a larger refactoring process, each
performed refactoring should preserve the model’s validity [3]. (2) More generally,
any in-place model change should preserve a basic validity, enough to view an
edited model in its domain-specific model editor [16]. Model editors typically
ensure the creation of models with basic validity right from the beginning.
This is the application scenario we will use as running example and for our
evaluation. A similar scenario is considered in projectional editing for textual
editors [32]. (3) Modeling the behavior of concurrent and distributed systems
with model transformations, each model represents a system state that should
fulfill system invariants such as safety properties [17]. (4) When generating code
from abstractly specified model transformations, the transformations should be
validity-preserving, especially for safety-critical systems [11].
State of the art. From the formal point of view, the theory of algebraic graph
transformation constitutes a suitable framework to reason about model transfor-
mations [9,10], in particular about rule-based transformation of EMF models [4].
Constraints are typically expressed as (nested) graph constraints [29,13], into
which a large and relevant part of OCL [24] can be translated [28]. Graph con-
straints can be integrated as application conditions into graph transformation
rules as shown in [13]. Given a rule and a constraint, there are two variants of in-
tegration, namely computing a constraint-preserving or a constraint-guaranteeing

rule. Both computations do not alter the actions of the rule but equip it with an
application condition. Graph validity is preserved, if applying an equipped rule
to a valid graph, the resulting graph is valid as well. Graph validity is guaranteed,
if applying an equipped rule to a graph, the resulting graph is valid. As for
tool support, OCL2AC [19] automatically translates OCL constraints into graph
constraints and integrates these as application conditions into transformation
rules specified in Henshin [1]. It computes guaranteeing rules.

Tests of OCL2AC have shown that resulting application conditions can become
very complex. Theoretically, application conditions of guaranteeing rules grow
over-exponentially in the worst case [26]. As there are interesting application
cases where transformations just need to be validity-preserving (as pointed out
above), it is worthwhile to investigate validity-preserving transformations further.
Habel and Pennemann [13] present a direct construction of the logically weakest
application condition, enough to preserve validity. As this kind of condition is
logically weaker, our expectation was in the beginning that it can be expressed in
a simpler form. In contrast, the resulting application conditions may contain even
more elements than the validity-guaranteeing ones. This is due to the approach
taken: The premise that the model was already valid before rule application is
added to the computed validity-guaranteeing application condition. The resulting
condition can be inherently difficult to simplify because of the used material
implication operator. An example is presented in [20].
Contribution and Structure. Focusing on validity preserving transformations
only, we develop optimizing-by-construction techniques to construct application
conditions that preserve validity and are considerably less complex than the
results of the original construction.
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1. In Sect. 4, we take a constraint and a rule as starting point and construct
an application condition that preserves validity. This construction is based
on the construction of the guaranteeing application conditions but simplifies
it by omitting parts that check for antecedent validity, while keeping parts
that prevent the introduction of violations. This automatic approximation of
the preserving application condition is conceptually new and quite general
in scope. While some of the simplifications are specific for EMF (Thm. 2),
the others (Thm. 1) are proven for graph constraints in general and can be
easily lifted to adhesive categories [18]. We will argue how some of these
simplifications omit global checks that have to traverse the whole model while
keeping local ones, i.e., checks being performed in the context of a rule match.

2. Practically, we have implemented the techniques on top of OCL2AC (Sect. 5)
and compared the application conditions of guaranteeing rules with those
of preserving ones. The results show a considerable loss in complexity of
application conditions (Sect. 6.1).

3. We provide an application case which shows that validity-preserving transfor-
mations are useful in practice. In domain-specific model editing (presented as
scenario (2) above), every state of the transformation process has to ensure
a basic model validity. The example comprises the MagicDraw Statechart
meta-model with 11 OCL constraints and 84 editing rules. The optimizations
do not only reduce the size of computed application conditions considerably
but also improve the performance of validity-preserving transformations.
In addition, we have conducted several evaluations that do not specifically
test our optimization but the overall approach. We compared the run times
of validity checking after a transformation using existing OCL validators
(a posterori approach) with running a validity-preserving transformation
(being enriched with application conditions) with and without optimization
(a priori approach) (Sect. 6.2). Results show that both approaches are fast
in practice. Actually, it is the first time that the usability of OCL2AC, and
the implemented approach in general, is investigated.

We start our presentation with the running example in Sect. 2 and recall the
formal and technical background in Sect. 3. In an appendix, we present all proofs
(Appendix A), an extended example (Appendix B), and more details about the
evaluation (Appendix C).

2 Running Example

In this section, we illustrate the effect of our optimizations on application condi-
tions computed by OCL2AC.

A simple Statecharts language serves as an example. Its meta-model is dis-
played in Fig. 1. A StateMachine contains at least one Region and Pseudostates as
connection points if they are of kind entryPoint or exitPoint. A Region contains
Transitions and Vertices. Vertex is an abstract class with concrete subclasses
State and Pseudostate. A State may contain Regions and Pseudostates to support
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StateMachine

name : EString

Pseudostate

kind : PseudostateKind = initial

Vertex

name : EString

Region

State

Transition

FinalState

PseudostateKind

initial
deepHistory
shallowHistory
join
fork
junction
choice
entryPoint
exitPoint
terminate

[1..1] target [0..*] incoming

[1..1] source [0..*] outgoing

[1..*] region[0..*] connectionPoint

[0..*] connectionPoint
[0..*] region

[0..*] transition

[0..*] subvertex

Fig. 1. A simple Statecharts meta-model

the specification of state hierarchies. FinalState inherits from State. Transitions
connect Vertices.

∀
(
self:Transition ,

∃
(
reg:Region self:Transitiontransition

))

Fig. 2. Graph constraint for TransitionInRegion

@
(

self:FinalState var29:Region
region

)

Fig. 3. Graph constraint for no_region

The UML definition specifies several constraints on statechart models. For ex-
ample, each Transition is required to be contained in a Region (TransitionInRegion)
and a FinalState is forbidden to contain a Region (no_Region). Figures 2 and 3
show these constraints as graph constraints, respectively. In the UML, however,
these constraints are specified in OCL; the OCL constraint for no_region, for
example, is specified as

context FinalState invariant no_region : s e l f . region�>isEmpty()

Fig. 4. Transformation rule in Henshin

Figure 4 shows a simple transfor-
mation rule in Henshin taken from [16]
for specifying an edit operation in Mag-
icDraw [21]. The rule moves an exist-
ing Region from an existing State (the
old source) to another existing State
(the new source). This is done by delet-
ing the containment edge region from
the old source and recreating it in the
new source. Rules specifying such edit
operations may be used, e.g., to recognize semantic change sets while comparing
two model versions [15,16].

The validity of basic constraints should be preserved throughout editing be-
cause a typical model editor is not able to display an instance violating them. Since
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FinalState is a subtype of State, applying the rule moveRegionFromStateToState
might introduce a violation of the constraint no_region. Using OCL2AC [19],
a language engineer can automatically integrate a constraint as an application
condition into the rule and calculate the according constraint-guaranteeing ver-
sion of the rule. The guaranteeing application condition obtained by integrating
constraint no_region into rule moveRegionFromStateToState forbids matching
this rule to a FinalState. It checks additionally if the model already encompasses
a FinalState containing a Region – either matched by the rule or not. Figure 5
presents the resulting guaranteeing application condition which is composed of
7 graphs (explained later in Sect. 4.1). Knowing the input model to be valid,
most of the checks are unnecessary. Especially the checks which do not only
involve elements being local to the rule application but amount to traversing
every existing node, i.e., the global checks.

@




OldSource:State

NewSource:FinalState

Selected:Regionregion 


∧ @




OldSource:State

NewSource:State

self:FinalState

Selected:Region

var29:Region

region

region




∧ @




OldSource:State

NewSource:State

self:FinalState Selected:RegionSelected:Region

region

region




∧ @




OldSource:State

NewSource:FinalState

Selected:Region

var29:Region

region

region


 ∧ @



OldSource:FinalState

NewSource:State

Selected:Region

var29:Region

region

region




∧@



OldSource:FinalState

NewSource:State

Selected:Regionregion

region

 ∧ @



NewSource:FinalState

OldSource:State

Selected:Region
region

region 


Fig. 5. Non-optimized application condition for moveRegionFromStateToState after

integrating the constraint no_region

In this paper, we develop and implement optimizations that allow for omitting
certain parts from the construction of a guaranteeing application condition. In
our example, we will arrive at the optimized application condition shown in Fig. 6
which consists of only one graph that, moreover, only requires a local check. It
forbids the rule node newSource:State to be matched to a FinalState.

@




OldSource:State

NewSource:FinalState

Selected:Regionregion 


Fig. 6. Optimized application condition for

moveRegionFromStateToState still preserv-

ing the constraint no_region

As the rule moveRegionFromState-
ToState does not change any graph
element occurring in constraint Transi-
tionInRegion, this constraint cannot be
violated by a result model if it was not
violated before. Hence, the optimized
application condition is just true. The
guaranteeing condition (not shown),
however, consists of three graphs. Thus, assuming valid input models, guarantee-
ing application conditions can be considerably simplified.
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3 Formal Background and Tooling

Our approach is based on the theory of algebraic graph transformation [9]. EMF
models and model transformations are formalized as typed attributed graphs and
graph transformations as presented in [4]. In the following, we recall (i) nested
graph constraints and conditions as a means to express properties of graphs and
graph morphisms and (ii) graph transformation rules as our formal background.
Besides, we mention OCL2AC as a tool support.

3.1 Constraints, Conditions, and Rules

Nested graph constraints formulate properties of graphs whereas nested graph

conditions express properties of graph morphisms [13], i.e., type and structure-
preserving mappings between graphs. Graph conditions are mainly used to restrict
the applicability of rules. Constraints and conditions are defined recursively as
trees of injective morphisms.

Definition 1 (Graph condition). Given a graph 𝑃 , a (nested) graph condition
over 𝑃 is defined recursively as follows: true is a graph condition over 𝑃 and

if 𝑎 : 𝑃 ãÑ 𝐶 is an injective morphism and 𝑐 is a graph condition over 𝐶, p𝑎 :
𝑃 ãÑ 𝐶, 𝑐q is a graph condition over 𝑃 again. Moreover, Boolean combinations of

graph conditions over 𝑃 are graph conditions over 𝑃 . A (nested) graph constraint
is a condition over the empty graph H.

Satisfaction of a graph condition 𝑑 over 𝑃 for a morphism 𝑝 : 𝑃 Ñ 𝐺, denoted

as 𝑝 |ù 𝑑, is defined as follows: Every morphism satisfies true. The morphism 𝑝
satisfies a condition of the form 𝑑 � D p𝑎 : 𝑃 ãÑ 𝐶, 𝑐q if there exists an injective

morphism 𝑞 : 𝐶 ãÑ 𝐺 such that 𝑝 � 𝑞 � 𝑎 and 𝑞 satisfies 𝑐. For Boolean operators,

satisfaction is defined as usual. A graph 𝐺 satisfies a graph constraint 𝑑, denoted
as 𝐺 |ù 𝑑, if the empty morphism to 𝐺 does so.

Graph constraints are expressively equivalent to a first-order logic on graphs [13,29].
To ease notation, we drop the domain of morphisms in constraints and conditions
whenever they may be unambiguously inferred and indicate the mapping by the
names of nodes. We call constraints of the form D𝐶 positive and of the form
 D𝐶 negative constraints. Examples for graph constraints and conditions with
informal explanation of their semantics are given in Sect. 2.

Rules are a technical means to declaratively define model transformations.

Definition 2 (Rule. Transformation). A rule 𝜌 � p𝑝, lac, racq consists of a

plain rule 𝑝 and left and right application conditions lac and rac. The plain rule

𝑝 consists of three graphs 𝐿, 𝐾, and 𝑅, called left-hand side (LHS), interface,
and right-hand side (RHS) with two inclusion morphisms 𝑙 : 𝐾 ãÑ 𝐿, 𝑟 : 𝐾 ãÑ 𝑅.

A rule 𝑝 is monotonic if 𝑙 : 𝐾 ãÑ 𝐿 is an isomorphism and only deletes if

𝑟 : 𝐾 ãÑ 𝑅 is an isomorphism. The application conditions lac and rac are graph

conditions over 𝐿 and 𝑅, respectively.
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Given a rule 𝜌 � pp𝐿
𝑙
ÐÝâ 𝐾

𝑟
ãÝÑ 𝑅q, lac, racq and an

injective morphism 𝑚 : 𝐿 ãÑ 𝐺 with 𝑚 ( lac, called

match, a (direct) transformation 𝐺 ñ𝜌,𝑚 𝐻 from

𝐺 to 𝐻 via 𝜌 at match 𝑚 is given by the diagram

to the right where both squares are pushouts.

𝐿 𝐾 𝑅

𝐺 𝐷 𝐻

𝑙 𝑟𝑚
(

lac

𝑛
(

rac

A rule 𝑝 is applicable at match 𝑚 if the first pushout square above exists, i.e.,

if 𝑚 � 𝑙 has a pushout complement 𝐷, and, moreover, the match morphism 𝑚
satisfies lac and the co-match 𝑛 satisfies rac.

Note that the first pushout square exists if and only if the match 𝑚 fulfills
the dangling edge check ensuring that a rule application at this match would
not let an edge dangle. Applying the rule, the elements of 𝑚p𝐿z𝐾q are deleted.
Then, at the chosen image of 𝐾 in 𝐺, a copy of 𝑅z𝐾 is created. Afterwards, the
resulting mapping of the graph 𝑅 into the new graph is checked to fulfill the
right application condition of the rule. In that case, the new graph is the result
of the rule application.

An example of a rule is shown in Fig. 4. Right application conditions are
important in theory but not necessary in practice as they may equivalently be
transformed into left application conditions. Therefore, application conditions
are understood to be left application conditions.

Computing application conditions from graph constraints. Given a rule and a
constraint, one computes all the different ways in which the constraint may be
satisfied after applying the rule. This is done by overlapping its RHS in all possible
ways with the graphs of the constraint. This computation is iterated along the
nesting structure of the constraint. The result is a right application condition
for the rule that is satisfied only if the constraint is valid after rule application.
By applying the inverse rule to this right application condition, again along
its nesting structure, a left application condition is received still guaranteeing
validity w.r.t. the given constraint. Adding the premise that the constraint was
already valid before rule application yields the preserving application condition.

Starting in [14] for special cases in the category of graphs, this construction
has been generalized to arbitrary nested constraints in the general setting of
ℳ-adhesive categories [13].

Fact 1 ([13]). Given a plain rule 𝑝 � p𝐿 Ðâ 𝐾 ãÑ 𝑅q and a graph constraint 𝑐
there are constructions Guap𝑝, 𝑐q and Presp𝑝, 𝑐q equipping 𝑝 with an application

condition ac such that 𝐻 ( 𝑐 for every transformation 𝐺 ñGuap𝑝,𝑐q 𝐻 and 𝐻 ( 𝑐
for every transformation 𝐺 ñPresp𝑝,𝑐q 𝐻 where 𝐺 ( 𝑐.

3.2 OCL2AC Tool

OCL2AC [19] is an Eclipse plug-in implementing the existing theory [13,28] for
adapting a given rule-based model transformation such that resulting models
guarantee a given constraint set. OCL2AC consists of two main components:
(1) OCL2GC takes a meta-model [7] and a set of OCL constraints as inputs
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and automatically returns a set of semantically equivalent graph constraints
as output. (2) GC2AC takes a transformation rule defined in Henshin and a
graph constraint and automatically returns the Henshin rule with an updated
application condition guaranteeing the given graph constraint. Each component
can be used independently as an Eclipse-based tool.

Limitations. The general formal approach we are based on, and hence OCL2AC
as well, come with the following limitations: The supported logic is two-valued
and first-order and thus the expression oclIsUndefined and the operation iterate
are not supported, for example. Moreover, there is no support to translate user-
defined operations and there is only limited support to integrate constraints on
attributes into Henshin rules that perform complex attribute computations.

4 Optimizing Application Conditions

The application conditions being calculated by the approach of the tool OCL2AC
guarantee validity even if the input is not a valid EMF-model. Since we focus
on validity preservation of EMF-models in this paper, the calculated conditions
can be considerably simplified. In this section, we investigate several strategies
to construct optimized validity-preserving application conditions.

4.1 Approximating Preservation

In common application scenarios (like refactoring), a user can assume that rules
are applied to instances showing a certain validity. Hence, when applying a rule,
an already valid constraint does not need to be guaranteed but just preserved.
The construction Pres of a preserving rule (as mentioned in Fact 1) takes this
into account. Though being logically weaker, the resulting application condition
can be even more complex with respect to the structure and number of contained
graphs and simplification is inherently difficult. Nevertheless, it is possible to
simplify guaranteeing application conditions during the construction process if
they just need to preserve validity. In the following, we present three forms of
simplification.

1. We collect all rule elements being deleted or created and check if this set
overlaps with the set of all constraint elements. If this overlap is empty, the
resulting preserving application condition is just true.

2. If a rule creates new graph structure only, positive constraints D𝐶 do not
need to be integrated into such a rule. Analogously, if a rule only deletes
graph structure, negative constraints  D𝐶 do not need to be integrated. In
both cases, applications of such a rule cannot introduce a new violation of
the constraint. Hence, the optimized application condition is just true.

3. When calculating an application condition, a constraint graph is overlapped
with the RHS graph of a rule in all possible ways. For negative constraints
 D𝐶 it is not necessary to consider all possible overlappings. One may omit
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all the cases where 𝐶 and the RHS 𝑅 do not overlap in at least one element
created. The parts of the application conditions arising from those cases
would just check that the input graph already fulfills the constraint.

Especially the third simplification omits cases where the arising graph in the
application condition contains nodes not connected to nodes of the LHS of the
rule, thus amounting to global checks upon application. We state the correctness
of these simplifications in the following theorem.

Theorem 1 (Correctness of simplifications). Let 𝑐 be a graph constraint

and 𝑝 � p𝐿 Ðâ 𝐾 ãÑ 𝑅q be a plain rule. Let 𝜌 � p𝑝, acq be the same plain rule

equipped with the application condition ac computed in one of the following ways:

1. If both the elements of 𝐿z𝐾 and the elements of 𝑅z𝐾 intersect emptily with

every graph 𝐶 occurring in the constraint 𝑐, then ac � true.
2. If 𝑝 is monotonic and 𝑐 is a positive constraint, then ac � true. Analogously,

if 𝑝 only deletes and 𝑐 is a negative constraint, then ac � true.
3. If 𝑐 �  D𝐶, let 𝐺𝑢𝑎p𝑝, 𝑐q yield the right application condition rac :�
 p
�

𝑖P𝐼 D𝑃𝑖q with morphisms 𝑐𝑖 : 𝐶 ãÑ 𝑃𝑖 and 𝑟𝑖 : 𝑅 ãÑ 𝑃𝑖. Let racpres :�
 p
�

𝑗P𝐽 D𝑃𝑗q with 𝐽 � 𝐼 including only those 𝑃𝑖 where 𝑐𝑖p𝐶qX𝑟𝑖p𝑅z𝐾q �� H.

Then ac is the application condition that arises by translating the right appli-

cation condition racpres to the LHS of rule 𝑝.

Then for all transformations 𝐺 ñ𝜌�p𝑝,acq 𝐻 where 𝐺 |ù 𝑐 also 𝐻 |ù 𝑐.

The proof follows a common pattern in all cases: Checking for the (non-)existence
of graphs occurring in the constraint in all these cases is sequentially independent

from application of the rule. Hence, checking the constraint for validity always
gives the same result, no matter if done before or after rule application.

Example 1 (compare Sect. 2). Constraint no_region is required to be integrated
into rule moveRegionFromStateToState since a region-edge is created by this rule
and contained in this constraint. Figure 5 shows the guaranteeing application
condition. The first graph (the uppermost graph) results from a maximal overlap-
ping of the constraint with the rule. Note that it is possible to identify nodes of
types State and FinalState since FinalState is a subtype of State (compare Fig. 1).
The second graph results from copying the graph of the constraint and the RHS
of the rule and putting them next to each other. The third graph results from
merging the nodes of type Region. The forth and the fifth graph result from just
merging nodes of type State and FinalState. The sixth and the seventh graph
result from merging the nodes of type State and the nodes of type Region. In
every case, the overlapping of the constraint with the RHS is then translated to
the LHS of the rule.

Our proposed optimizations lead to the result displayed in Fig. 6 by the
application of Thm. 1, 3.: Except for the subcondition containing the uppermost
graph, all other subconditions in Fig. 5 are omitted. The uppermost one has
to be saved because the region-edge created by the rule is overlapped with the
region-edge of the constraint. The omitted subconditions do not only involve
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elements being local to the rule application but amount to traversing every
existing FinalState leading to global checks. To conclude, only one local check
remains.

Example 2 (compare Sect. 2). The constraint TransitionInRegion is not required to
be integrated into the rule moveRegionFromStateToState. Thm. 1, 1. justifies this:
the rule moveRegionFromStateToState does not have any effect on the validity
of the constraint since its application neither deletes nor creates elements that
occur in the constraint.

4.2 Dealing with EMF’s Built-in Negative Constraints

EMF has several built-in constraints [4]. Instance models that do not satisfy
these EMF-constraints cannot even be opened in the EMF-editor. Most of these
constraints are negative, i.e., they forbid certain patterns in instances to exist.
Concretely, cycles over containment edges, nodes with more than one container,
and parallel edges, i.e., two edges of the same type between the same two nodes,
are forbidden. Therefore, given an application condition ac of a rule 𝑝, each
occurrence of a subcondition of the form D𝐴 with 𝐴 violating one of these EMF
constraints, may be replaced by false without altering the meaning. We know that
such patterns cannot appear in any EMF instance model. Thus, in the context
of EMF, the result is semantically equivalent to the actual guaranteeing rule but
may contain fewer subconditions.

Theorem 2 (Correctness of EMF-specific simplifications). Let 𝑐 be a

graph condition over 𝑃 and 𝑐1 be the condition that results from replacing every

occurrence of a subcondition Dp𝑎 : 𝐶1 ãÑ 𝐶2q of 𝑐 by false if the graph 𝐶2 contains

parallel edges or multiple incoming containment edges to the same node. Then

an injective morphism 𝑝 : 𝑃 ãÑ 𝐺 into an EMF-model graph 𝐺 satisfies 𝑐 if and

only if it satisfies 𝑐1. In particular, if 𝑐 is a graph constraint, any EMF-model

graph 𝐺 satisfies 𝑐 if and only if it satisfies 𝑐1.

Correctness of this theorem is proven by induction along the nesting structure
of the constraint in the cases of parallel edges and multiple containment nodes.
The same argument also applies in the case of finite containment cycles. But since
containment cycles of arbitrary length cannot be expressed as graph constraints,
the correctness of replacing their occurrence by false is intuitive but not amenable
to a formal proof by induction.

Example 3 (compare Sect. 2). Thm. 2 would drop the third, sixth, and seventh
subcondition from the application condition in Fig. 5 by replacing it with false
since it contains a node with more than one container or parallel edges.

5 Tooling

We developed our optimizer as an Eclipse-plugin tool support on top of OCL2AC
implementing all of the proposed simplifications except for the elimination of
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containment cycles. The optimizer consists of two main components: (a) an
analyzer that detects if a constraint needs to be integrated into a given rule at all
(Thm. 1, 1 and 2) and (b) a simplifier for eliminating unnecessary subconditions
from the guaranteeing application conditions during the construction process

(Thm. 1, 3 and Thm. 2). Given a Henshin rule and a graph constraint, our
optimizer automatically renders the rule to preserve the validity of the constraint.
Additionally, we implemented simplifications of application conditions by applying
well-known equivalence rules like D p𝐶1, D𝐶2q � D𝐶2 if 𝐶1 � 𝐶2, D𝐶1 _ D𝐶2 �
D𝐶1 if 𝐶1 � 𝐶2, or D𝐶1 ^ D𝐶2 � D𝐶2 if 𝐶1 � 𝐶2 [26]. Applying these, entire
graphs may be omitted and even levels of nesting may be collapsed. The tool
support can be downloaded from our website 3.

6 Evaluation

In this section, we show the highlights of our evaluation; a comprehensive overview
is given in [20] and the artifacts can be downloaded 3.

Research questions (RQs). Our evaluation aims to answer the following RQs
regarding the complexity and performance: (RQ 1:) How complex are the resulting

application conditions with and without optimizations? How does this compare to

the complexity of the original graph constraints? To perform validity-preserving
steps, there are two basic approaches: We either test for validity after each trans-
formation step and rollback the step if its resulting model is not valid (a posteriori

check) or the transformation is designed to perform validity-preserving steps only
(a priori check). We, therefore, ask the following questions: (RQ 2.1:) How fast is

the a priori validity check compared to the a posteriori check? (RQ 2.2:) Does the

optimization of application conditions improve the performance significantly?

General set-up. As an application case, we consider the scenario of in-place model
transformations that should preserve a basic consistency such that the resulting
instances can be opened in a domain-specific model editor throughout. In [16],
Kehrer et al. derive consistency-preserving editing rules from a given meta-model.
However, they support basic constraints like multiplicities only. More complex
OCL constraints are left to future work. In their evaluation, this restriction has
the most serious impact on the UML meta-model for Statecharts [25]. Out of 17
original constraints they identified 11 to be enforced in MagicDraw [21]. In total,
they used 84 editing rules for Statecharts.

We translated those 11 OCL constraints into graph constraints and then
integrated them as application conditions into the 84 rules.

7 valid test models of sizes between 800 to 16 000 elements (nodes and
references) are used to conduct our performance experiments. These test models
are synthetic containing copies of an initial valid model composing 5 objects of
each non-abstract class of the meta-model. All evaluations were performed with a
desktop PC, Intel Core i7, 16 GB RAM, Windows 7, Eclipse Neon, Henshin 1.4.
3 https://ocl2ac.github.io/home/

https://ocl2ac.github.io/home/opt/
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6.1 Evaluating Complexity

In theory, the size of a computed application condition (the number of graphs)
can grow over-exponentially in the worst case compard to the size of the original
constraint [26]. In practice, however, the growth is moderate. Mainly due to node
typing, many node overlappings are not possible. To find out how far this blow
up of application conditions is a problem in practice, we conducted the following
experiments considering the number of graphs as well as the number of nesting
levels in application conditions. Additionally, we explore how far the complexity
can be reduced using our optimization. Table 1 gives an overview of the results.

Integration without optimization. Given the 11 OCL constraints of our application
case, we translated them to graph constraints containing 2 to 10 graphs (36 in
total) and integrated all of these in each of the 84 rules using OCL2AC (i.e.,
computing the guaranteeing application conditions). The newly added application
conditions contain 77.3 graphs on average (with 36 being the best and 191 being
the worst case) and 6 nesting levels. Thus, on average the number of graphs
more or less doubles which is far better than could be suspected from theory.
Nonetheless, the number of graphs is way too high and also the number of levels
should be smaller in most cases. Hence, there is a clear need to further optimize
the resulting application conditions.

Integration with optimization. To find out how efficient our optimizations of
application conditions are, we conducted the same experiment as above using our
developed optimizer. In result, the average number of graphs in the application
condition is 10.8 (with 0 being the best and 35 being the worst case), i.e., the
complexity is reduced by factor 7 on average using our optimizer. Additionally,
the deepest nesting level of 6 was often reduced to at most 2 levels. Thm. 1,1
turns out to be the main reason behind this considerable loss of complexity:
Instead of integrating 11 constraints into each rule, on average only 1.7 constraints
are integrated into a rule.

Table 1. Number of graphs of application conditions and deepest nesting levels before

and after optimization (with emphasis on extreme cases)

w/o optimization w optimization

Rule #graphs level #graphs level #integrated constraints

create_Transition 191 6 1 1 1

create_FinalState 44 6 31 6 11

delete_Trigger 37 6 0 0 0

Average (84 rules) 77.3 6 10.8 2.6 1.7

Table 1 shows extreme cases: Considering all 84 rules and the 11 constraints,
the best optimization was reached with rule create_Transition where the resulting
application condition with 191 graphs was reduced to a condition with just one
graph. One of the lowest optimizations came along with rule create_FinalState.
Since it is overlapped with all the 11 constraints, the number of the resulting
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graphs is reduced by factor 1.4 only (using Thm. 1, 3). Rule delete_Trigger started
with one of the lowest number of graphs in its application conditions. This
condition is eliminated altogether using our optimization.

Across 10 runs, the average time of integrating the 11 graph constraints for
statecharts into all 84 rules was 2.3 sec. without optimization and 1.03 sec. with
optimization. In particular, calculation of our simplified application conditions is
even faster than computing the guaranteeing ones. In both cases, calculating all
needed application conditions for a given rule set is fast enough to be used in
practice.

To answer RQ 1, given graph constraints with 2–10 graphs (3.2 on average)
and 2–6 nesting levels (2.3 on average), non-optimized application conditions
have 36–191 graphs (77.3 on average) and 6 nesting levels, while optimized ones
have 0–35 graphs (10.8 on average) and 0–6 nesting levels (2.6 on average).
Hence, condition sizes are considerably reduced (by factor 7 on average).

6.2 Evaluating Performance

To answer RQ 2.1 and RQ 2.2, we set up two test scenarios comparing the
runtime of a posteriori and a priori validity checks.

Experiment set-up. Each test scenario (TS) consists of 15 test cases, one case for
15 selected rules (out of 84). These 15 rules are representative w.r.t. supported
editing actions and rule size, in particular, they cover all kinds of editing actions.
Their sizes range between 3 and 7 model elements. The average size of an
application condition of the 15 rules is 56.4 graphs with nesting level 6 (without
optimization) and 16.8 graphs with nesting level 3.1 (with optimization). A test
case of TS 1 consists of first applying an original rule to a test model at a random
match and then checking the validity of the resulting model (using (a) the EMF
validator [7] configured to employ the OCLinEcore validator [23] to validate
OCL constraints and (b) the OCL interpreter [22]). A test case of TS 2 consists
of applying an updated rule (with (a) the guaranteeing and (b) the optimized
application condition) to a test model at a random match. To eliminate effects
stemming from the choice of match, each test case of a test scenario is performed
100 times. A test scenario in TS 1 (a) is performed in one run time session such
that caching of information can be used advantageously. A second variant of
TS 1 (a) performs each a posteriori check in a separate session making caching
useless. All the test scenarios have been performed on all the 7 valid test models.

The average run times are measured over altogether 15 000 applications for
each scenario. A timeout (TO) takes place if the average run time exceeds 5
minutes. To evaluate an OCL constraint using the OCL interpreter, the context
object has to be given. Focusing on approach differences, the following times were
excluded from the evaluation time: The time needed to find the context objects
of all OCL constraints for the OCL interpreter, the loading time of a test model
to any validator, and the time needed to roll back to the state of a test model
after applying a rule whose resulting model does not satisfy the constraints.
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Table 2. Average run time (in seconds) of a single rule application (and validation)

over 15 test cases with 100 random matches each using models of varying size

Model size

Scenario (Caching) 800 1 500 3 000 6 000 10 000 13 000 16 000

TS 1(a) (yes) 0.01 0.01 0.01 0.02 0.04 0.05 0.06

TS 1(a) (no) 1.66 1.71 1.76 1.79 1.8 1.83 1.85

TS 1(b) (no) 128.97 185.08 254.17 TO TO TO TO

TS 2(a) (no) 0.01 0.01 0.04 0.13 0.3 0.5 0.79

TS 2(b) (no) 0.01 0.01 0.02 0.05 0.12 0.22 0.33

Experiment results. Table 2 shows the following results: A posteriori checking
is performed in 3 variants. TS 1 (a) uses the EMF validator with and without
caching mechanism since we noted the followings: In the first validation check, the
EMF validator took 1.77 to 1.95 seconds to check a test model of size between 800
to 16 000, whereas in the next validation checks, it took only 5 to 63 milliseconds.
Our understanding for this improvement is that the EMF validator saves the
model state after the first validity check. Thus, in the next checks at the same
run time session, the EMF validator is still able to reach the model in the cache
such that only the elements affected by rule application are considered. Without
caching, the average run times are less than 2 seconds; with caching they are even
about two magnitudes faster. Using the OCL interpreter (TS 1 (b)) instead leads
to run times over 2 minutes or even timeouts (after 5 min.). A priori checking
is performed in two variants: In TS 2 (a) rules with non-optimized application
conditions are used while the application conditions in TS 2 (b) are optimized.
The run times of both variants are below 1 second and hence slightly better than
in TS 1 (a) without caching. Using caching, however, TS 1 (a) is even faster. This
consideration yields the answer to RQ 2.1. To answer RQ 2.2 we can see that
using rules with optimized application conditions is two and a half times faster
than without optimization. Almost all of the times our rules were applicable
and thus the whole application condition of a rule was completely checked and
evaluated. To conclude, we can state that scenarios TS 1 (a) and TS 2 are both
fast enough to be usable in practice. However, a rollback step in the a posteriori

approach (TS 1) may not always be feasible. For example, if the rollback step is
defined by applying the inverse rule, this is might not always be applicable if the
rule computes attribute values. Furthermore, in the a posteriori approach, the
rule action is performed first which may cause dangerous situations in several
fields such as a railway system, self-driving cars and an e-health system.

Threats to Validity. External validity can be questioned since we consider a
limited number of OCL constraints and rules. For our performance experiments,
we selected 15 out of 84 editing rules which are representative concerning their
kinds (rules for creating, deleting, setting, unsetting, and moving model elements)
and sizes. Moreover, we reduced the effect of the rules’ matches by executing each
rule at 100 matches chosen randomly from each given model. For performance
evaluation, we restricted our studies to synthetic models. As we did not spot any
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performance bottleneck, we are convinced that using realistic models would not
yield basically different results.

Concerning the considered OCL constraints it can be noticed that about
half of them are simple negative constraints. However, all core features of OCL
(logical operators, navigation expressions and collection operators) are covered
and at least one rather complex constraint is included. And, more importantly,
this kind of constraints seems to be quite typical for the chosen application case.
Constraints required by model editors are often negative to forbid input that is
not allowed anyway. Therefore, we are confident that the results are representative.
Nevertheless, further case examples are interesting to be considered in the future.

7 Related Work

Related works can be distinguished into two groups: (1) other works ensuring
transformation rules to be validity-preserving and (2) simplifying (application)
conditions and constraints.
Ensuring transformation rules to be validity-preserving. In [2,27], Azab, Penne-
mann et al. introduce ENFORCe, a prototype implementation that can ensure the
correctness of graph programs. It integrates graph constraints as left application
conditions of rules as well but supports (partially) labeled graphs, not EMF
models, and there is no translation from OCL to graph constraints available.

Clarisó et al. present in [5] how to calculate an application condition for a
transformation rule and an OCL constraint, directly in OCL. The supported
subset of OCL is slightly larger than in OCL2AC because, staying with OCL,
they can support operations which are not first-order. The authors provide a
correctness proof for the presented translation into application conditions. In
addition, there is a partial implementation. Resulting application conditions are
not further optimized, neither by ENFORCe nor in the work by Clarisó et al. To
the best of our knowledge, our work is the only one which optimizes the resulting
application conditions considerably.
Simplifying (application) conditions and constraints. Rules for semantic equiv-
alences in graph constraints and conditions have been reported in several
places [26,27,28] and their application can lead to considerable simplification in
the structure of a constraint. There are also approaches and implementations
simplifying OCL constraints, especially automatically generated ones [12,6]. De-
pending on the usage scenario, such simplifications could provide a valuable
pre-processing step to our approach.

8 Conclusion

Application scenarios where each graph transformation step has to preserve
the validity of models w.r.t. given constraints are needed in practice. As the
construction of application conditions in [13] yields validity-guaranteeing ones
and assuming that the preservation of graph validity is already sufficient, the
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resulting application conditions can be considerably optimized. We developed
several techniques (in Thm. 1 and Thm. 2) to construct optimized validity-
preserving application conditions and implemented them on top of OCL2AC. In
our evaluation, the usability of OCL2AC was investigated for the first time, with
and without optimization. The evaluation results show that OCL2AC can lead to
quite large application conditions which can be significantly optimized by factor 7
(on average) using our developed techniques. Accordingly, while the performance
results of correct graph transformations are good in general, applying rules with
optimized application conditions is shown to be ca. 2.5 times faster than applying
non-optimized ones.

In future, we intend to further optimize resulting application conditions
by identifying redundant subconditions and by checking negative invariants of
modeling languages. Our ultimate goal is to obtain understandable application
conditions identifying exactly those portions of the given constraints that are
relevant for a given rule. This work is already an essential step into that direction.
Moreover, our optimization of conditions could have some interesting applications
beyond MDE. We are interested, e.g., in assessing if our ideas can be beneficially
integrated into proof systems [27,30].
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A Proofs

This section contains the proofs of the theorems presented in the main paper.

Proof (of Thm. 2). We first show that this replacement results in a graph
condition again: Since all morphisms are injective, if a subcondition Dp𝑎 : 𝐶1 ãÑ
𝐶2q is replaced by false because of such a violation, so are all subconditions
dependent of 𝐶2 in the tree structure of the condition: These subconditions
contain the same violation.

We prove the general statement using structural induction.
The statement holds for 𝑐 �true since true’ = true and 𝑝 |ùtrue for every

injective morphism 𝑝.
Let 𝑐 � Dp𝑎 : 𝑃 ãÑ 𝐶, 𝑑q be a condition and, by induction hypothesis,

𝑞 |ù 𝑑 ô 𝑞 |ù 𝑑1 for each injective morphism 𝑞 from 𝐶 to any EMF-model graph.
First, if 𝐶 neither contains parallel edges nor multiple incoming containment
edges to the same node, then 𝑐1 � Dp𝑎 : 𝑃 ãÑ 𝐶, 𝑑1q. Now, for every injective
morphism 𝑝 : 𝑃 Ñ 𝐺, where 𝐺 is any EMF-model graph

𝑝 |ù 𝑐 ô D 𝑞 : 𝐶 ãÑ 𝐺, s.t. 𝑞 � 𝑎 � 𝑝 and 𝑞 |ù 𝑑

ô D 𝑞 : 𝐶 ãÑ 𝐺, s.t. 𝑞 � 𝑎 � 𝑝 and 𝑞 |ù 𝑑1

ô 𝑝 |ù 𝑐1 .

Secondly, if 𝐶 contains parallel edges or multiple incoming containment edges
to the same node, then 𝑐1 � false. Therefore, no injective morphism 𝑝 : 𝑃 ãÑ 𝐺
satisfies 𝑐1, where 𝐺 is any graph. But since no EMF-model graph 𝐺 contains
parallel edges or multiple incoming containment edges to the same node, there
does not exist any injective morphism 𝑞 : 𝐶 Ñ 𝐺 into any EMF-model graph 𝐺.
Hence, there does never exist an injective morphism 𝑞 s.t. 𝑞 � 𝑎 � 𝑝 and 𝑞 |ù 𝑑1.
In summary, 𝑝 * 𝑐 ô 𝑝 * 𝑐1 for all injective morphisms 𝑝 : 𝑃 ãÑ 𝐺 for any
EMF-model graph 𝐺.

The induction steps for Boolean operators are routine. [\

The next proof, for all three situations, relies on the notion of parallel
independence which we first shortly recall.

Definition 3 (Parallel independence). Given two plain rules 𝑝𝑖 � p𝐿𝑖
𝑙𝑖ÐÝâ

𝐾𝑖
𝑟𝑖

ãÝÑ 𝑅𝑖q with 𝑖 � 1, 2, two direct transformations 𝐺 ñ𝑝1,𝑚1 𝐻1 and 𝐺 ñ𝑝2,𝑚2

𝐻2 via those rules are parallelly independent if there exist two morphisms 𝑑1 :
𝐿1 Ñ 𝐷2 and 𝑑2 : 𝐿2 Ñ 𝐷1 as depicted below such that 𝑚1 � 𝑓2 � 𝑑1 and

𝑚2 � 𝑓1 � 𝑑2. The rules 𝑝1 and 𝑝2 are parallel independent if every pair of

transformations 𝐻1 ðù
𝑝1

𝐺 ùñ
𝑝2

𝐻2 is.
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𝑅1 𝐾1 𝐿1 𝐿2 𝐾2 𝑅2

𝐻1 𝐷1 𝐺 𝐷2 𝐻2

𝑛1 𝑛2

𝑟1 𝑙1

𝑚1 𝑚2

𝑙2 𝑟2

𝑓1 𝑓2

𝑑1𝑑2

Proof (of Thm. 1).

1. Let 𝐺 ñ𝑝 𝐻 be a transformation via rule 𝑝 where 𝐺 |ù 𝑐. By induction,
we show the stronger statement that for every condition 𝑐 over any graph
𝑃 , there exists an injective morphism 𝑔 : 𝑃 ãÑ 𝐺 with 𝑔 |ù 𝑐 if and only if
there exists an injective morphism 𝑔1 : 𝑃 ãÑ 𝐻 with 𝑔1 |ù 𝑐. In particular,
for constraints 𝑐 � D pH ãÑ 𝐶, 𝑑q this implies that 𝐻 |ù 𝑐 (via the empty
morphism) if and only if 𝐺 |ù 𝑐. We prove the statement by induction over
the structure of the condition. If 𝑐 � true, 𝐻 |ù 𝑐 ô 𝐺 |ù 𝑐.
Let 𝑐 � D p𝑎 : 𝑃 ãÑ 𝐶, 𝑑q, 𝑔 : 𝑃 ãÑ 𝐺 and 𝑔 |ù 𝑐. By definition, there exists an
injective morphism 𝑞 : 𝐶 ãÑ 𝐺 such that 𝑞 � 𝑎 � 𝑔 and 𝑔 |ù 𝑑. By induction
hypothesis, there exists an injective morphism 𝑞1 : 𝐶 ãÑ 𝐻 such that 𝑞1 |ù 𝑑.
Consider the constant rule 𝑖𝑑𝑃 : 𝑃 Ðâ 𝑃 ãÑ 𝑃 (which just checks for the
existence of the graph 𝑃 ). The intersection between 𝐿z𝐾 and 𝑃 is empty and
therefore the rules 𝑝 and 𝑖𝑑𝑃 are parallelly independent. In particular, pairs
of transformations 𝐺 𝑖𝑑𝑃

ð𝐺 ñ𝑝 𝐻 are. Hence, for the match morphism 𝑔
for rule 𝑖𝑑𝑃 in 𝐺, there exists an according match morphism 𝑔1 : 𝑃 ãÑ 𝐻
such that 𝑔1 � 𝑞1 � 𝑎 (compare the Local Church-Rosser Theorem and its
proof [9]). Thus, 𝑔1 |ù 𝑐.
In the other direction, let 𝑔1 : 𝑃 ãÑ 𝐻 and 𝑔1 |ù 𝑐. By definition, there exists
an injective morphism 𝑞1 : 𝐶 ãÑ 𝐻 such that 𝑞1 � 𝑎 � 𝑔1 and 𝑞1 |ù 𝑑. By
induction hypothesis, there exists an injective morphism 𝑞 : 𝐶 ãÑ 𝐺 such
that 𝑞 |ù 𝑑. Consider, again, the constant rule 𝑖𝑑𝑃 : 𝑃 Ðâ 𝑃 ãÑ 𝑃 . The
intersection between 𝑅z𝐾 and 𝑃 is empty and therefore the rules 𝑝 and
𝑖𝑑𝑃 are sequentially independent. In particular, transformation sequences
𝐺 ñ𝑖𝑑𝑃

𝐺 ñ𝑝 𝐻 are. This is equivalent to 𝑝�1 and 𝑖𝑑𝑃 being parallelly
independent. Then, again by the Local Church-Rosser Theorem, there is an
injective morphism 𝑔 : 𝑃 ãÑ 𝐺 such that 𝑔 � 𝑞 � 𝑎. Thus, 𝑔 |ù 𝑐.
Induction over the Boolean operators is standard, again.

2. The proof for this second situation uses parallel independence in a similar
fashion; since the considered constraints are not nested, we do not need an
induction. Let 𝐻 denote a graph which arises by application of a monotonic
rule 𝑟 : 𝐾 ãÑ 𝑅 to a graph 𝐺, i.e., 𝐺 ñ𝑟 𝐻. A monotonic rule is parallel
independent from the rule which just checks for the existence of the graph 𝐶,
i.e., each pair of transformations 𝐺 𝑖𝑑𝐶

ð𝐺 ñ𝑟 𝐻 is, where 𝑖𝑑𝐶 : 𝐶 Ðâ 𝐶 ãÑ 𝐶
is constant. Hence, every match for the graph 𝐶 in 𝐺 extends to a match for
graph 𝐶 in 𝐻, i.e., 𝐺 |ù 𝑐 ñ 𝐻 |ù 𝑐.
Dually, checking the existence of a graph 𝐶 is sequentially independent of
applying a rule 𝑙 : 𝐿 Ðâ 𝐾 which only deletes. Hence, every match for 𝐶 in a
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graph 𝐻 can be extended to a match for 𝐶 in 𝐺, i.e., 𝐻 |ù D𝐶 ñ 𝐺 |ù D𝐶
and hence 𝐺 |ù 𝑐 ñ 𝐻 |ù 𝑐.

3. Let 𝐼 be a set indexing the possible overlappings of 𝐶 and 𝑅, i.e., the pairs of
jointly surjective, injective morphisms 𝑖𝑅 : 𝑅 ãÑ 𝑃𝑖, 𝑖𝐶 : 𝐶 ãÑ 𝑃𝑖. Let 𝐽 � 𝐼
be the subset of 𝐼 that consists only of that indices denoting overlappings
where at least one newly created element from the rule, i.e., an element from
𝑅z𝐾 is overlapped with one from 𝐶. Let rac �  p

�
𝑗P𝐽 D 𝑗𝑅 : 𝑅 ãÑ 𝑃𝑗q be the

right application condition of 𝑝 arising by only considering overlappings from
𝐽 (and not from the whole set 𝐼). Let ac denote the application condition
for rule 𝑝 when moving rac equivalently to the LHS of 𝑝.
We prove the statement by contraction. Thus, let 𝐺 |ù 𝑐 �  D𝐶, 𝐺 ñ𝜌�p𝑝,acq,𝑚
𝐻, so 𝑝 is equipped with application condition ac, and assume 𝐻 |ù  𝑐 � D𝐶.
This means, there is an injective morphism 𝑞1 : 𝐶 ãÑ 𝐻. By construction of
𝐼, there exists an 𝑖 P 𝐼 such that there is an injective morphism 𝑞1 : 𝑃𝑖 ãÑ 𝐻
with 𝑛 � 𝑞1 � 𝑖𝑅 and 𝑞1 � 𝑖𝐶 � 𝑞 (compare Fig. 7). Since 𝑝 is equipped with
application condition ac, 𝑖 P 𝐼z𝐽 ; otherwise rule application would have been
prevented by that application condition:

𝑛 *  D p𝑖𝑅 : 𝑅 ãÑ 𝑃𝑖q ô 𝑛 |ù D p𝑖𝑅 : 𝑅 ãÑ 𝑃𝑖q

ô D 𝑞1 : 𝑃𝑖 ãÑ 𝐻, s.t. 𝑛 � 𝑞1 � 𝑖𝑅 .

Now, like in the proofs above, checking for the existence of 𝑃𝑖, 𝑖 P 𝐼z𝐽 in
graph 𝐻 is independent of applying rule 𝑝. Hence, the morphism 𝑞1 : 𝑃𝑖 ãÑ 𝐻
restricts to an injective morphism 𝑞 : 𝑃𝑖 ãÑ 𝐺 and therefore 𝐺 |ù  𝑐 � D𝐶
via the injective morphism 𝑞 � 𝑞 � 𝑖𝐶 . This contradicts 𝐺 |ù 𝑐.

[\

𝐶

𝐿 𝐾 𝑅 𝑃𝑖

𝐺 𝐷 𝐻

𝑙 𝑟

𝑚 𝑛

𝑖𝑅

𝑑1 𝑑2

𝑖𝐶

𝑞1

Fig. 7. Existence of satisfying morphism
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B C-Preserving Application Conditions as Defined in the

Theory [13]: An Example

Using our running example (See Sect. 2), we present the resulting c-preserving
application condition 𝑎𝑐𝑝𝑟𝑒𝑠 w.r.t. the construction provided by Habel and Pen-
nemann in ([13], Def. 9). The construction of a c-preserving application condition
is defined by them using an implication operator as follows:

𝑎𝑐𝑝𝑟𝑒𝑠 � p𝑆ℎ𝑖𝑓𝑡p𝑟�1, 𝑐q ñ 𝑎𝑐𝑔𝑢𝑎q (1)

where 𝑟�1 denotes the inverse rule of the given rule 𝑟, 𝑐 denotes the given
constraint and 𝑎𝑐𝑔𝑢𝑎 denotes the c-guaranteeing application condition defined as
𝐿𝑒𝑓𝑡p𝑟, p𝑆ℎ𝑖𝑓𝑡p𝑟, 𝑐qq which is the output (of the second component) of OCL2AC.

Figure 8 presents the 𝑐-preserving application condition of integrating the
constraint no_region into the rule moveRegionFromStateTOState being con-
structed according to the formula (1). The left column displays the antecedent
that expresses that the model was already valid before rule application and the
right column displays the consequent of the conditional. The resulting application
condition 𝑎𝑐𝑝𝑟𝑒𝑠 contains 14 graphs although we have integrated only one con-
straint into the rule. To further simplify the result, the material implication has
to be simplified by applying De Morgan’s Law and the distributivity law yielding
a formula in conjunctive normal form. It consists of 7 clauses where each clause
contains 8 literals. To simplify the particular clauses, subgraph isomorphism
checks have to be performed—a problem that in NP-complete in general. As soon
as the input constraint is really nested, the simplification becomes even more
difficult since particular clauses can no longer be simplified by simply checking
for subgraph isomorphisms. Our optimizing-by-construction technique simplifies
the resulting application conditions throughout the construction process without
the need for such costly computations. In the best case, as, e.g., in Fig. 6, we
even receive the logically weakest possible application condition in a simplified
version as output.

C Evaluation Artifacts and Results
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Fig. 8. The resulting c-preserving application condition 𝑎𝑐𝑝𝑟𝑒𝑠 w.r.t. the construction

provided by Habel and Pennemann in [13], compare with our optimized version in Fig. 6



24 N. Nassar et al.

This section presents the editing rules of the Statecharts (See Table 3) and the
11 OCL constraints (See Table 4) used in the performance experiment. Table 5
presents the number of the resulting graphs, when integrating without and with

optimization all constraints as application conditions into each rule of the selected
15 rules and the number of the overlapped constraints as well 4.

Table 3. 15 edit rules of all kinds

Rule ID Rule Name

Rule 01 addToConnectionPointReference_entry_Pseudostate

Rule 02 addToStateMachine_submachineState_State

Rule 03 createBehavior_IN_State

Rule 04 createFinalState_IN_Region

Rule 05 createRegion_IN_StateMachine

Rule 06 deleteFinalState_IN_Region

Rule 07 deleteState_IN_Region

Rule 08 deleteTrigger_IN_Transition

Rule 09 moveConstraint_FROM_Transition_guard_TO_Transition_Transition

Rule 10 moveFinalState_FROM_Region_subvertex_TO_Region_Region

Rule 11 moveTransition_FROM_Region_transition_TO_Region_Region

Rule 12 removeFromConnectionPointReference_entry_Pseudostate

Rule 13 removeFromConnectionPointReference_exit_Pseudostate

Rule 14 setState_submachine_TO_StateMachine

Rule 15 unsetState_submachine_TO_StateMachine

4 For a rule which already has an application condition, the number of its graphs is

subtracted from the result.
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Table 4. OCL Constraints of Statecharts

ID OCL Constraints of Statecharts

1 invariant owned: (stateMachine -> notEmpty() implies state -> isEmpty())

and(state -> notEmpty() implies stateMachine -> isEmpty());

2 invariant submachine_states: isSubmachineState=false implies connection ->

notEmpty();

3 invariant destinations_or_sources_of_transitions: self.isSubmachineState=true

implies (self.connection -> forAll(cp |cp.entry -> forAll(p|p.stateMachine =

self.submachine) and cp.exit -> forAll (p | p.stateMachine = self.submachine)));

4 invariant submachine_or_regions: self.isComposite=true implies not

(self.isSubmachineState=true);

5 invariant composite_states: self.connectionPoint -> notEmpty() implies

self.isComposite=true;

6 invariant no_outgoing_transitions: self.outgoing -> size() = 0;

7 invariant no_regions: self.region -> size() = 0;

8 invariant no_entry_behavior: self.enty -> isEmpty();

9 invariant no_exist_behavior: self.exit -> isEmpty();

10 invariant cannot_reference_submachine: self.submachine -> isEmpty();

11 invariant no_state_behavior: self.doActivity -> isEmpty();

Table 5. Numbers of graphs of application conditions and deepest nesting levels before

and after optimization for the selected 15 rules

w/o optimization w optimization

Rule #graphs level #graphs level #overlapped const.

addToConnectionPoint.. 58 6 30 6 (1)

addToStateMachine.. 77 6 25 6 (2)

createBehavior.. 70 6 1 1 (3)

createFinalState.. 44 6 31 6 (11)

createRegion.. 41 6 7 2 (2)

deleteFinalState.. 42 6 29 6 (11)

deleteState.. 42 6 29 6 (11)

deleteTrigger.. 37 6 0 0 (0)

moveConstraint.. 39 6 0 0 (0)

moveFinalState.. 86 6 0 0 (0)

moveTransition.. 49 6 0 0 (0)

removeEntry.. 55 6 27 6 (1)

removeExit.. 55 6 27 6 (1)

setState_submachine.. 77 6 25 6 (2)

unsetState_submachine.. 74 6 22 6 (2)

Average (15 rules) 56.4 6 16.8 3.8 3.1
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